skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sirikonda, Dhawal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a high-speed underwater optical backscatter communication technique based on acousto-optic light steering. Our approach enables underwater assets to transmit data at rates potentially reaching hundreds of Mbps, vastly outperforming current state-of-the-art optical and underwater backscatter systems, which typically operate at only a few kbps. In our system, a base station illuminates the backscatter device with a pulsed laser and captures the retroreflected signal using an ultrafast photodetector. The backscatter device comprises a retroreflector and a 2 MHz ultrasound transducer. The transducer generates pressure waves that dynamically modulate the refractive index of the surrounding medium, steering the light either toward the photodetector (encodingbit1) or away from it (encodingbit0). Using a 3-bit redundancy scheme, our prototype achieves a communication rate of approximately 0.66 Mbps with an energy consumption of ≤ 1 μJ/bit, representing a 60× improvement over prior techniques. We validate its performance through extensive laboratory experiments in which remote underwater assets wirelessly transmit multimedia data to the base station under various environmental conditions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. We introduce a structured light system that enables full-frame 3D scanning at speeds of \SI{1000}{\fps}, four times faster than the previous fastest systems. Our key innovation is the use of a custom acousto-optic light scanning device capable of projecting two million light planes per second. Coupling this device with an event camera allows our system to overcome the key bottleneck preventing previous structured light systems based on event cameras from achieving higher scanning speeds---the limited rate of illumination steering. Unlike these previous systems, ours uses the event camera's full-frame bandwidth, shifting the speed bottleneck from the illumination side to the imaging side. To mitigate this new bottleneck and further increase scanning speed, we introduce adaptive scanning strategies that leverage the event camera's asynchronous operation by selectively illuminating regions of interest, thereby achieving effective scanning speeds an order of magnitude beyond the camera's theoretical limit. 
    more » « less